当前位置: 威尼斯官网 > 滨湖校区 > 教育教学 > 招生专栏 > 优秀教师推荐——数学——陈长星
推荐文章

优秀教师推荐——数学——陈长星

时间:2014-05-10 08:20来源:威尼斯官网 编辑:办公室 点击:
  

 


 
陈长星老师概况
 

     教师的真正本领,不在于他是否会讲述常识,而在于他能否激发学生的学习动机,唤醒学生的求知欲望,让他们兴趣盎然的参与到教学过程中来。他的幽默与机智,一直是吸引学生的法宝。他带给学生们成就感,也带给学生最细致的关怀。

 

哪里去了? (陈长星)

在学习了变量与函数之后,我给学生出示了这样一个习题:

已知等腰三角形的周长为12cm,若底边长为ycm),一腰长为xcm)。(1)写出yx之间的函数关系式;

2)求自变量x的取值范围。

学生依据已有的只是经验,很容易完成了第(1:y= -2x+12。而第二问却出现了两种答案:x>00<x<6

我并没有给出判断,而是让学生讨论一下到底哪个结论正确。有的学生说:“x为等腰三角形的腰长,必须大于0.”有的同学补充说:等腰三角形的底边长y也必须大于0,也就是-2x+12>0,解得x<6,所以自变量的取值范围是0<x<6我问学生们是否同意这个意见,学生一致同意。

此时,我并没有急于给出问题的答案,没有对他们的回答给予肯定或否定。我让学生按照自变量x的取值范围画等腰三角形。我让学生画当自变量x=1时的情况,学生画了半天也没有画出符合要求的三角形。

这时,我趁热打铁,让学生讨论为什么会出现这样的情况呢?

经过讨论,有的学生恍然大悟,他们提出:等腰三角形的边长都大于0这个条件还不够,还需要考虑腰和底是否符合三角形三边的关系,(即三角形的两边之和的大于第三边)看它们是否能构成三角形。

这时,我又问:你们同意吗?,大家异口同声:同意!

那你们再试试看,重新求一求自变量x的取值范围。

学生解答:

由题意得,

x>0

-2x+12>0

2x>-2x+12

3<x<6

学生脸上都露出了成功的微笑……

由这一案例,我想到:

对于数知识题结论的生成,教师不应代替学生思考,不能包办代替……要给学生更多的时间和空间,让他们亲身经历问题的探究过程,获得成功的体验;不能怕学生答不上或答错了,要让学生暴露在学习过程中的认知矛盾,给学生创造条件,让他们真正经历发现问题,分析问题,解决问题的过程;要让学生的思维之火形成燎原之势,让他们获得成功,享受成功……

 

(责任编辑:滨湖办公室)
------分隔线----------------------------
热门文章
XML 地图 | Sitemap 地图